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A flow visualization technique by means of an expanded laser beam and trace
amounts of particulate additives is used to study the behaviour of Newtonian and
non-Newtonian elastic liquids in a number of complex geometries. Particular atten-
tion is paid to the effect of fluid elasticity on the flow characteristics.

Attempts are made to simulate numerically the observed flows by using finite-
difference techniques. The agreement between theory and experiment is very
satisfactory.

1. INTRODUCGTION

Many fluids of industrial importance exhibit flow characteristics that cannot be predicted on
the basis of the Navier-Stokes equations (cf. Walters 1980). Such fluids are called non-
Newtonian. The polymer melts and polymer solutions used in plastics processing and fibre
spinning are well known examples of non-Newtonian fluids, as are multigrade oils, liquid
detergents, paints and printing inks. In industry, such fluids are often processed in complex
geometries and there is a widely acknowledged need to understand the behaviour of non-
Newtonian fluids in flows involving abrupt changes in geometry. This is especially so if the
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~ fluids in question have a built-in memory of past deformation and can be classified as non-
Newtonian elastic liquids. There is then an important interplay between fluid memory and
the rapid changes in flow characteristics expected near abrupt changes in geometry.

In a steady simple shear flow with velocity components given (in a rectangular Cartesian

reference frame x%)t by
vl = gx%, 02 =03 =0, (1)

where ¢ is a constant velocity gradient or shear rate, elastic liquids have corresponding stress
components given by
P =1(g) = g, } ()
P = = vi(q), PP—1% = wy(q).

The viscosity 7(¢q) is usually a monotonic decreasing function of the shear rate ¢, and the
corresponding normal stress differences v, and v, (especially v;) can be substantial and impor-
tant.

In an extensional flow, the relevant extensional viscosity can be very high indeed (especially
for some mobile polymer solutions), implying that such materials offer much higher resistance .
to stretching motions than they do to a shearing flow (cf. Petrie 1979).

In the experiments to be described in §2, we have chosen to work with the so-called Boger
(1977/8) fluid which is a dilute solution of polyacrylamide in a syrup—water base. Over a
reasonable range of shear rates, the Boger fluid can have a viscosity that is sensibly constant
and yet possess a first normal stress difference v, that is significantly greater than the shear
stress, indicating a high level of elasticity in the fluid. To a sufficient approximation, v, is
found to be a quadratic function of shear rate ¢, and v, is zero (cf. Walters 1980, p. 13; Keentok
et al. 1980).

A note of caution is in order at this p'oint. Rheometrical measurements over a reasonable
shear-rate range (0-100 s~1, say) may indicate that the Boger test fluid has a so-called ‘second-
order’ behaviour, but conditions near abrupt changes in geometry are very severe and may
represent circumstances that are well outside the rheometrical measurements made on the test
fluid. This means that we should not necessarily expect second-order behaviour to pertain at
all points of a complex flow field. At the same time, the use of the Boger fluid has a significant
advantage over other test polymer solutions in that we are at least able to compare flow
characteristics for elastic and Newtonian liquids at essentially the same Reynolds number,
and the often dominating shear-thinning effect found in other test fluids is not so conspicuous.
This means that changes in flow characteristics between the Boger fluid and a corresponding
Newtonian syrup—water mixture can be mainly attributed to elastic memory effects.

In this paper, we shall investigate the flow behaviour of Newtonian and elastic liquids in
a number of complex geometries. Our motivation is threefold. First, we have a general interest
in the overall flow characteristics of fluids in complex geometries. Secondly, we wish to investi-
gate how these characteristics are affected by fluid elasticity. Lastly, we are concerned with the
possibility of numerically simulating the flows by using modern developments in computing
mathematics.

1 We use standard tensor notation. Covariant indices are written as subscripts, contravariant indices as super-
scripts, and the usual convention for repeated indices is assumed.
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2. EXPERIMENTAL
(a) Apparatus

The flow system is shown schematically in figure 1. The bulk of the 101 of test fluid is
contained in the reservoir (A). The fluid is circulated by a Watson—-Marlow type HRSV
variable flow-rate peristaltic pump (B). Damping bottles (C) are introduced as a buffer
volume to smooth out the flow. The test fluid flows through a long entry tube, through the
test geometry (D) and back to the main reservoir. A by-pass system (E) is included to allow
variation of the flow rate through the geometry. Flow rates are measured by timing the collec-
tion of a given volume of fluid through the measuring arm (F). Temperature is controlled to
within 0.5 °C by the water bath (G) which has both an electric heating coil and a water-
cooled coil.
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Ficure 1. The flow system: A, reservoir; B, pump; C, damping bottle; D, test geometry;
E, by-pass; F, flow-rate measurement arm; G, temperature control bath.

Typical flow rates range from 0-20 mls~! for a Newtonian liquid of viscosity 0.1 Pas.
This allows a maximum Reynolds number of approximately 40.

All the test sections have a depth of 20 mm and the various cross sections available are shown
schematically in figure 2, together with the relevant dimensions.

In the present investigation, interest centres on flow visualization. In the past, opaque dyes
have often been used for this purpose. Usually one has to insert the dye upstream of the region
of interest and wait for the flow pattern to develop before photographing it against a high
contrast background. Often, the streamlines are not clearly defined. A further disadvantage
is that the test fluid is contaminated by successive additions of dye and soon becomes opaque
to any illumination.

Several workers have recently used small tracer particles in conjunction with optical illu-
mination to visualize steady flows. Mackley (1978) has studied Newtonian and non-Newtonian
flow between rotating rollers, while Cable & Boger (1978) have used the technique to examine
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Ficure 2. Schematic diagram of experimental geometries; all dimensions are in mm: (a) square hole, (b) deep

hole, (¢) protuberance, (d) mixing and separating (reversed), (¢) mixing and separating, variable gap I,
(f) cylinder.
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Ficure 3. Flow-visualization apparatus.
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vortex characteristics in tubular entry flows. More recently still, interest has centred on flows
past bluff bodies, flows past a cavity or hole and flows near a sharp corner (Taneda 1979).

In the present work, we have resorted to a simple visualization technique which requires
only trace amounts of particulate additives and which uses an expanded laser beam as illu-
minating source. A diagram of the arrangement is shown in figure 3.

A 5 mW helium-neon laser (Spectra Physics Model 120) is spread into a narrow sheet of
light by means of a cylindrical lens. This sheet is collimated by using a large spherical lens.
The collimated strip of light illuminates the plane of interest. This is then photographed by
using a conventional camera mounted vertically above the flow. Since the amount of light
available is low, a fairly fast film speed is necessary. We have used Kodak Tri-x Pan or Ilford
HP 5 film uprated in development to 1200 ASA equipment film speed. If necessary, neutral
density filters can be included in the optical path to control the degree of continuous illumi-
nation of the flow field.

The principle of the method is simple. Small particles, contained in and moving with the
fluid, scatter light on entering the measuring plane. When developed, the photographs of the
streaklines give a visual representation of the flow.

The selection of ideal scattering particles will depend on the liquid under investigation.
After detailed consideration, we have found it convenient to use Hostalen GUR, a high density
polyethylene powder (Hoechst, U.K.) as the seeding material. The grain size of this powder
when in suspension is of the order of 0.1 mm diameter and the particles have a density of
0.94 g cm—3 so that they are suitable for liquid media having a density near that of water.
They are also inert, have good light scattering characteristics and are of a fairly uniform size.
For more dense media, polyvinyl chloride particles with a density of 1.4 g cm™® may be used.

As an optimum concentration, we have found it convenient to use 2 g of powder in every
10 1 of liquid.

(b) Test fluids

The Newtonian liquids used in the experiments are high maltose syrup-water mixtures,
whose viscosities are determined by using a Brookfield viscometer.

The so-called Boger (1977/8) liquid provides a convenient elastic test liquid. It is a dilute
solution of polyacrylamide in a mixture of water and maltose syrup (C.P.C., U.K.). The
polymer concentration and the ratio of water to syrup must be carefully chosen to ensure that
the viscosity is as independent of shear rate as possible. When this process is optimized, the
corresponding first normal stress difference v, is reasonably approximated by a quadratic

relation of the form
vy = 27,14, (3)

where 7, is the viscosity (now assumed constant) and A is a relaxation time. The product of
A and a typical shear rate is the Weissenberg number W. (Inspection of figure 2 reveals that
most of the geometries have an unambiguous fully developed Poiseuille-flow region before a
protuberance, slot or obstacle is encountered. The characteristic shear rate used in the Weissen-
berg number is taken to be U/L, and the Reynolds number R is pUL/7,, where p is the density,
U is the mean velocity and L is a characteristic length, which is taken as the width of the fully
developed Poiseuille-flow channel.)

Characterizing an elastic liquid by means of a constant viscosity 7, and a relaxation time A
(or, equivalently, characterizing a flow by using a Reynolds number R and Weissenberg
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number W) is an idealization, but a useful one as we attempt to compare flow characteristics
for elastic and Newtonian liquids. (The Weissenberg number is of course zero for a Newtonian
liquid.)

The rheometric behaviour of the Boger liquids is obtained from a Weissenberg Rheogonio-
meter R16 model which provides (7, ¢) and (v, ¢) data (see figure 4). Liquids B1 and B3
clearly have the desired properties of a Boger liquid but marked shear-thinning behaviour is
evident in liquid B2. We have nevertheless characterized all #iree liquids in terms of a density
p, a viscosity 7, and a relaxation time A, the relevant values being estimated to be as in table 1.
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Ficure 4. Rheometric data for the test liquids used: (a) liquid B1, () liquid B2, (¢) liquid B3.

TABLE 1. ESTIMATED DENSITY, VISCOSITY AND RELAXATION TIME FOR LIQUIDS B1-B3

liquid p/(g cm~?) 7o/ (Pa's) A/s
B1 1.3 0.126 0.03
B2 1.3 0.3 0.03
B3 1.35 0.18 0.034

(¢) Flow visualization

In a small number of the flow visualization photographs, some of the streamlines are seen
to end abruptly at solid boundaries, which is impossible if the flow is truly two-dimensional.
In figures 54 and 64, d (plates 1 and 2), this is essentially an illusion caused by the positioning
of the camera, but, in figures 104,  (plate 6), it is caused by a three-dimensional effect which
is present in some of the high Reynolds number situations. That the flow under extreme
conditions has a significant three-dimensional component is easily verified by rotating the laser
through 90° and observing the flow in the vertical plane. The spiralling flow observed in figure
8 (plate 4) is also a three-dimensional effect.

A suitable and important first example of the flow visualization technique is provided by
flow over a two-dimensional hole (figures 24, 4). It is a situation that has generated a significant
literature (see, for example, Walters 1975, p. 75; Hou et al. 1977) and it has also led to con-
troversy (Han & Yoo 1980). Some of the points at issue are elucidated by the present study.

Figure 5 contains a comparison of the flow of Newtonian and elastic liquids over a square
hole at two relatively low Reynolds numbers. The asymmetry in the recirculating vortex
caused by fluid inertia in the Newtonian case is clearly counteracted by fluid elasticity. Indeed,
one of the features of flow over a hole is the opposing asymmetries resulting from inertia and
elasticity. This is most clearly seen in figure 7 (plate 3) for the deep wide hole.
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Another dominant feature is also evident from figures 6 and 7, namely the lower positioning
of the vortex in the hole for the elastic liquids accompanied by the lowering and distortion of
the separation streamline.

The deep hole allows investigation of the flow below the dominant initial recirculating vortex
and, as expected, a very weak secondary vortex is present (figure 8).

We now consider flow past a protuberance (see figure 2¢). Photographs of the streamlines
for a Reynolds number of 5 are given in figure 9 (plate 5). There is no strong vortex behaviourf
and the only feature meriting specific comment is the increased curvature of the streamlines
for the elastic liquid. Downstream vortices are clearly in evidence at higher values of the
Reynolds number (figure 10), and the main effect of elasticity is to decrease the vortex size and
change the curvature of the dividing streamline between the mainstream and the vortex flows.
There is also a clearly defined movement in the position of the vortex node.

Mixing flow (see figure 2d) leads to interesting flow characteristics as the ratio of the flow
rates in the two inlet arms is varied (for a fixed mean flow rate in the downstream wide channel).
It will be seen from figures 11 and 12 (plates 7 and 8) that, as the flow rate in the bottom arm
is reduced, an important recirculating vortex develops which is attached to the lower surface.
The presence of the vortex forces the stream in the bottom arm through a narrow gap adjacent
to the barrier. The main effect of elasticity is again to change the curvature of the dividing
streamline and to alter the position of the vortex with respect to the edge of the barrier. There
is also evidence, not discernible from the figures, that the intensity of the vortex is reduced by
the presence of elasticity. (The available experimental data in figures 11 and 12 for Newtonian
and elastic liquids are at different Reynolds numbers, but the stated conclusions were confirmed
by several visual inspections during the experimental programme.)

Separating flow is obtained by reversing the flow in the mixing geometry. Not surprisingly,
the main features of the streamlines in separating and mixing flow are similar in general terms
and we have simply chosen to show the interesting effect of elasticity on the recirculating vortex
(figure 13, plate 9). We note with interest that, in contrast with the situation in mixing flow,
the intensity of the vortex is observed to increase with elasticity in separating flow.

In many respects, combined mixing and separating flow (see figure 2¢) provides the most
interesting geometry of the present study. The flow directions and flow rates can be varied in
numerous ways and the arrows on the various figures again indicate the direction and relative
strength of the streams in the various arms.

Figures 14 and 15 (plates 10 and 11) show the streamlines for fixed flow rates and three
values of the gap /. In general, some of the liquid entering the test section proceeds unidirec-
tionally while some is reversed. Not surprisingly, unidirectional flow tends to dominate as /
decreases but a reversed flow is still in evidence even with the smallest gap shown. In relative
terms, the elastic liquid shows a stronger aversion to reversed flow than the Newtonian liquid,
and unidirectional flow is clearly more in evidence in figure 15 than in figure 14. Another
interesting contrast is the striking symmetry in figure 14 which is largely absent in figure 15.
There is no doubt that the availability of a very refined mechanism for controlling the flow
rates in the respective arms would also lead to symmetry for the elastic liquid in what is after
all a symmetrical situation, but, other things being equal, we have found symmetry to be
an elusive feature in the flow of highly elastic liquids.

1 At very low Reynolds numbers, symmetrical streamline patterns arise about the obstruction, reflecting small
weak vortex behaviour that changes negligibly with elasticity, both upstream and downstream of the obstruction.
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Figure 16a (plate 12) is an attempt at obtaining symmetry for an elastic liquid, which is
reasonably successful. It shows that conditions can exist for which all the flow is of the reversed
kind. Figures 165 and 16¢ show how the flow characteristics change with different flow rates
in the various arms, figure 16¢ having the form we would have anticipated from our study of
mixing and separating flow.

The final geometry considered in the present study involves channel flow that is dlsturbed
by a cylindrical obstacle (see figure 2f). The obstacle is in a slightly asymmetric position with
respect to the channel. For the Newtonian liquid (figure 174, plate 13) the asymmetry in the
streamlines is barely discernible to the naked eye (if at all) whereas the asymmetry is exaggerated
for the elastic liquid (figures 174, ¢). Thisis yet another dramatic demonstration of the differences
in flow characteristics found in Newtonian and elastic liquids. It supports our conclusion in
regard to combined mixing and separating flow that symmetry is elusive for elastic liquids
whenever there is a mechanism in the flow for promoting an asymmetry of any degree.

3. Tueory

Attempts to simulate theoretically the flow of Newtonian and elastic liquids in complex
geometries have had to await the advent of very high speed computers. Developments with
respect to Newtonian fluids are now well advanced (see, for example, Kawaguti 1965; Roache
1972; Taylor & Hood 1973; Gallagher ¢t al. 1978) but successful studies involving non-
Newtonian liquids with high elasticity are of fairly recent origin (see, for example, Walters
1979; Leal 1979; Crochet & Bezy 1979).

To characterize the behaviour of highly elastic liquids flowing in complex geometries
requires integral or implicit-differential rheological equations of state and in the latter case
this means that the components of the stress tensor have to be treated as dependent variables
along with the velocity components and the pressure. The basic problem involved in this
complication has now been overcome (see, for example, Perera & Walters 1977), but confidence
in numerical predictions for highly elastic liquids is still hampered by a number of factors,
including

(i) the choice of the most appropriate rheological equation of state;

(ii) the correct strategy of handling re-entrant corners in the numerical simulation;

(iii) the extension of numerical algorithms to realistic values of the Weissenberg number
where interesting changes in flow characteristics are observed in the corresponding experi-
mental studies.

The first problem concerning rheological equations is not a serious one and, given that the
best one can hope for currently is the qualitative (or at best semi-quantitative) prediction of
observed behaviour, any one of a number of differential equations of the Oldroyd/Maxwell
type or their integral equivalents (Court ¢t al. 1981) can be chosen without invoking criticism.
Certainly, for the Boger fluid, the so-called upper convected Maxwell model would be accept-
able. This has equations of state given by

bix = — b0+ Pixs (4)
Iy ot = 2y )

where 8;;, is the Kronecker delta, ¢ an isotropic pressure, ¢ is the (first) rate-of-strian tensor
and b/b¢ is the convected time derivative introduced by Oldroyd (1950); 7, is a constant
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viscosity coefficient and A, is a relaxation time. For the simple shear flow given by (1), the
corresponding stress distribution for the upper convected Maxwell model is given by

p12 o q”O) pll __p22 — 2170/\1q2’ p22 _paa = 0. (6)

It is clear that (6) is an acceptable representation of the rheometric behaviour of the Boger
fluid discussed in §1. A variable viscosity behaviour can be introduced into the model in
various ways. We find it appropriate to take

p/ik +A %p!ik +,u.,p}7'e(1ﬁk = 27, (1 + A, b%) ek (7)

where 4, and A, are positive constants with A, < A;, in which case the viscosity in a simple

shear flow is given by
1(g) = N[t +moAeg®]/[1 + 1o A1g%]- (8)

Ficure 18. The square-hole geometry.

A more serious obstacle in the process of obtaining reliable numerical predictions concerns
the correct strategy for handling re-entrant corners. The problem is far more acute for elastic
models than it is for Newtonian liquids and really requires a detailed asymptotic-expansion
analysis near the corner for its resolution (Holstein 1980). This is a non-trivial problem with no
guarantee of ultimate success. To make headway, we have therefore used the most acceptable
simple corner strategy available, namely an extension of that due to Kawaguti (1965). Its
application to elastico-viscous flow problems is discussed by Perera & Walters (1977) and
Davies et al. (1979).

In all existing simulation studies for highly elastic liquids there is an effective upper bound
on the Weissenberg number above which the numerical scheme will not converge.t This is
the case in the present study and we have not always been able to reach the Weissenberg levels
we would have wished. At the same time, our simulations are sufficient to point to significant
success in predicting the observed behaviour described in §2(c).

+ It is well known that numerical algorithms for models with a variable viscosity behaviour can reach higher
values of the Weissenberg number than corresponding algorithms for models with a constant viscosity. For this
reason, we have occasionally been forced to work with model (7) rather than the simpler model (5).

Vol. go1. A 1460 17
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Our overall numerical strategy follows closely that described by Davies et al. (1979). It is
a square-mesh finite-difference representation which involves the decoupling of the nonlinear
system of governing equations and the solving of the resulting linear systems by an s.0.R.
iterative technique. Available computer store and time allowed approximately 2500 grid
points in the flow geometry.

We shall outline the numerical procedure for the square-hole geometry (figures 2a and 18)
which contains all the essential features of the present work.

We introduce non-dimensional variables through the substitutionst

x1 x2 V1 v?
e 0 ek 0 e U ek 0
* L’ x > v > v U’
L UL AU (©)
p’ik* = p,@k 77———, R = p” . = —‘]L )
oU 0

where L is a characteristic length (the width of the channel HG) and U is a characteristic
velocity (the mean velocity across HG). The governing equations for a two-dimensional flow

of model (5) are then
0% 02
@ =~ (o 3o 1

(92 W dp dw) oy N iz oy g (1)
Ox1 0x?  Ox% Ox! Ox10x?  0(x%)2 0O(x1)2 Oxlox?
, ap’ll ap’ll avl al}l
11 —_ 2 —_ 2 . — —_ 12
b (1 2w )+W( +v axz) 2Wp P e (12)
, ov? ap’“ 0p'22 Ov? Ov?
22 2 ne - 9. 13
p ( —2W )+W( +o? o 2) WP = = 255, (13)
, ap’lZ ap’12 avl 81]2)
_ 10 '22 2 ne o (2, 20 4
wp axl -Wh + w ( ox1 tY Ox? ) +p (ax2 + dx1 (14)
with v! = 0¢/0x% v? = — 0¢/0x!, where w and ¢ are the non-dimensional vorticity and stream

function respectively, and we have dropped the star notation for convenience of presentation.
Equations (10)—(14) are five equations in the five unknowns p'1, p'22, p"12, w and ¢.

The boundary conditions on ¢ on the solid boundaries AH and BCDEFG are obtained from
the no-slip condition v = v2 = 0. Those on HG and AB (boundaries which are assumed to
be far enough away from the hole for the flow across them to be unaffected by the presence of
the hole) are obtained from the known fully developed Poiseuille-flow prevailing over these
boundaries. The related boundary conditions on the other dependent variables can be obtained
by techniques that are now well documented (see, for example, Davies ¢t al. 1979).

By using a method of inner and outer iterations, the rheological equations of state and the
stress equations of motion are solved as three decoupled systems of equations in the stress
components, w and ¢. At the same time, and in contrast to the work of Davies e al. (1979),
a successful strategy is found to be to consider, within each inner stress iteration, the rheological
equations as linearly coupled differential equations in p''1, p'22 and p'12

Although the numerical scheme necessarily supplies values of the five variables p'11, p'22, p'12,

+ For model (7), Wis given by W = (A, —A,) U/L, and the time constants A, and p, are non-dimensionalized
by multiplying by U/L.
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w and ¢ at each grid point, our interest in the present paper is restricted to the stream function
¢ which determines the flow field representation. Acceptable relative tolerance specifications
for iterative convergence in the variables [@, stress, w] are also modified to [10-4, 10-2, 10-1].
This choice is felt to be consistent with the discretized errors of the formulae used to approxi-
mate the governing equations. Furthermore, provided a local grid Reynolds number condition
is satisfied which will guarantee a diagonally dominant vorticity matrix of equations, all
vorticity derivatives are centrally differenced. Under-relaxation of the vorticity equation, and
in some instances the stress equations (with a relaxation parameter of about 0.2) is often found
to be a useful ploy in rendering convergent solutions when Gauss—Seidel iteration fails. Such
points of numerical detail are fully discussed by Webster (1979) and Davies & Webster (1981).
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Ficure 19. Numerical simulation for flow over a square hole.

Representative numerical predictions for the square-hole geometry are given in figure 19,
the square grid used in the computation allowing 20 mesh lengths across AB. The numbers in
this and subsequent figures correspond to ¢-values. Figure 19 may be compared with the
experimental data shown in figures 5 and 6. The initial symmetry which is known to be present
when R = W = 0 is destroyed by the opposing influences of inertia and elasticity and there
is a tendency for the vortex in elastic liquids to retreat deeper into the hole, although the
numerical predictions in this respect are not as dramatic as the experimental results shown in
figures 5 and 6. At the same time, the predictions for W = 0 are in excellent agreement with
experiment. We were not able to obtain converged numerical solutions for values of W higher
than 0,15 for R = 10.
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The opposing influences of inertia and elasticity in determining flow characteristics and the

lower positioning of the vortex in the hole as the elasticity is increased are even more dramatic-
ally demonstrated by the numerical simulations for the deep-hole geometry, for which 10 mesh
lengths were used across AB (figures 20), which may be compared with the experimental
results shown in figure 7. We were not able to obtain a converged numerical solution for
W = 0.75 and even for W = 0.38, it was necessary to use model (7) rather than model (5).
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Ficure 20. Numerical simulation for flow over a deep hole, model (7) being used in (b) and (d).

Non-dimensional values of A;, A, and g, are A; = 0.45, A, = 0.075, 4, = 0.0007.

Figure 21 contains Newtonian simulations for the deep-hole geometry which demonstrate
the existence of a very weak secondary vortex of the sort indicated by the long-time-exposure
experimental results shown in figure 8. Indeed, the predicted flow for R = 20 is in remarkably

good agreement with the experimental results.
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We have found the protuberance geometry to be the most difficult to handle in the numerical
simulation program and it has been necessary to use model (7) to achieve even the modest
values of W indicated in figures 22 and 23. For this geometry, the grid used allowed 15 mesh
lengths over the wide-channel width.
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Ficure 21. Numerical simulation for flow over a deep hole.

() R=5W=0.08

Ficure 22. Numerical simulation for flow over a protuberé,nce, model (7) being used in QR
Ay = 0.09, A, = 0.015, g, = 0.003.

16-3
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(a) R=20,W=0
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- 1.02
| 10 10 (5) R=20,W=005

Ficure 23. Numerical simulation for flow over a protuberance, model (7) being used in (b);
Ay = 0.06, A, = 0.01, gy = 0.005.
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Ficure 24. Numerical simulation for mixing flow. Ratio of flow rates is
(a) 2:1, (d) 5:1, (¢) no flow rate in bottom arm.
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Ficure 25. Numerical simulation for mixing flow. Ratio of flow rates is
(a) 5:1, (b) 20:1, (¢) no flow rate in bottom arm.
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F1cure 26. Numerical simulation for mixing flow; no flow rate in bottom arm.
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Ficure 28. Numerical simulation for combined mixing and separating flow; equal flow rates in all arms.
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The Newtonian simulations for R = 5 and R = 20 are both in reasonable agreement with
the experimental results given in figures 9 and 10, and the trend of a decreasing size of down-
stream vortex with increasing elasticity is also apparent. In other respects, the simulations are
hampered by the very small values of I attainable for this geometry.

Flow in the mixing geometry (figure 24) has been amenable to numerical simulation, and
the relevant predictions are given in figures 24-26. These may be compared with the experi-
mental data of figures 11 and 12. The available grid allowed eleven mesh spaces across the
wide channel; the barrier occupied one space, so that each of the narrow channels had a
thickness of five mesh spaces. (This also applies to separating flow and combined mixing and
separating flow discussed below.) W = 0.1 represents the upper limit of Weissenberg number
(with the use of model (5)) for this geometry.
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07 07
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- [ —
0 0
0.35 0.35
0773 . 0.773
¢ 2
1 A
) (&=
10 10
09 0.9
0773 0773
0.35 035
0 0
R — —

Ficure 29. Numerical simulation for combined mixing and separating flow; equal flow rates in all arms.

The main conclusions to be drawn from the simulation of mixing flow may be summarized
as follows. First, a recirculating vortex appears when the ratio of the flow rates in the two arms
is approximately 20:1. This is in excellent agreement with the experimental observations.
- Secondly, elasticity reduces the strength of the recirculating vortex and alters its position in
general agreement with the experimental results.
Excellent simulation is also obtained for the associated separating flow, for which the flow
directions in the mixing geometry are reversed. Figure 27 shows that elasticity increases the
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strength of the vortex in this case and has the opposite effect on the movement of the vortex
to that predicted and observed for mixing flow. This is in excellent agreement with the experi-
mental observations (cf. figure 13).

— R=5,W=04 —
0 0
0.35 - 0.35
0.81 0.81
0.9 - 0.9
10 10
10 KRR XREIRIES R R I IIALL, i
. r— > .9
0.81 = 0.81
0.35 > 0.35
0 Q
— —_—

Ficure 30. Numerical simulation for combined mixing and separating flow; equal flow rates in all arms.
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Ficure 31, Numerical simulation for combined mixing and separating flow with relative flow rate
in each arm indicated by length of arrows.

Combined mixing and separating flow provides a further demonstration of the power of the
present numerical simulation technique. Figures 28-30 contain the relevant predictions when
the flow rate in each arm is the same. These may be compared with the experimental results
given in figures 14 and 15. Except for the narrow gap case, W = 0.3 represents the maximum
value of the Weissenberg number attainable. We see that unidirectional flow tends to dominate
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as the gap width [ decreases, as one would expect, although a reversed flow still exists even
with the smallest gap. Interestingly, the elastic liquid shows more inclination to follow uni-
directional flow, in satisfying agreement with the conclusions reached in §2.

In the R = 5, W = 0.4 simulation for the narrow gap there is the suggestion of the type of
asymmetry shown in figure 15¢.

We have attempted to simulate the complex flows described in figure 16 and have been
able to attain the relevant Weissenberg numbers involved. Figure 31 contains the predictions
for essentially the same flow conditions as those pertaining in the experiments. A comparison
of figure 16 with figure 31 indicates dramatically good agreement in all cases with even the
finer details of the flow described.

Finally, for completeness, we remark that simulating the asymmetric flow past a circular
cylinder described experimentally in figure 17 is outside the scope of the present work.

4, CONCLUSION

Numerical simulation in Newtonian and nor-Newtonian flow has now reached the point
where quite complex flows can be handled and the effect of fluid elasticity assessed (qualita-
tively at least). Problems still remain, especially those associated with extending the Weissenberg
number range, but at least a comprehensive set of experimental results is now available to
facilitate future tests of new numerical techniques.

We have benefited from several discussions with Dr W. M. Jones and Dr A. R. Davies.
During the course of the work described in this paper, T.C. and M.F.W. were employed
as postdoctoral research associates on research grants financed by the S.R.C.
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(b) R=3,W=0.38
A——

(c) R=6,W=0 (d) R=6,W=0.75

FicurE 7. Flow a deep hole: () and (¢) Newtonian, (b) and (d) liquid B3.
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--—

R=20,W=0

Ficure 8. Flow over a deep hole: exposure time, 10 minutes.
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(a) R=5,W=0

(b) R=5,W=0.1

Ficure 9. Flow over a rectangular protuberance: (a) Newtonian, () liquid B1.
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el AR

Ficure 11. Mixing flow: Newtonian liquid; ratio of flow rates is
(a) 2:1, (b) 5:1, (¢) 100:1; Reynolds number based on flow in wider channel.
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Cochrane et al., plate

(b) R=5,W=0.25

e

R=5,W=0.25

Freure 12. Mixing flow: liquid B2; ratio of flow rates is (a) 5:1, (b) 20:1, (¢) 100:1;

=l

Reynolds number and Weissenberg number based on width of wider channel.




Lond. A, volume 301 Lochrane et al., plate

(b) R=5,W=0.25

I'icure 13, Separating flow: (¢) Newtonian liquid, (b) liquid B2; ratio of flow rates in the two
arms is 100:1; molds number and Weissenberg number based on width of wider channel.
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(¢) R=5,W=0

Ficure jombined mixing and separating flow : Newtonian liquid; variable gap/, (¢) [ = 18 mm, (4) / = 15 mm,
(¢) I = 10 mm; flow rate in all arms equal; Reynolds number based on flow in one of the arms.
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(a) R=5W=0175

(b) R=5W=075

(c) R=5W=0.75

Ficure 15. Combined mixing and separating flow: as for figure 14 with liquid B3;
Reynolds number and Weissenberg number based on width of one of the arms.




Phil. Trans. R. Soc. Lond. A, volume 301 Cochrane et al., plate 12

(b) R=0.75,W=0.17

(c) R=1,W=0.23

Ficure 16. Combined mixing and separating flow: liquid B2; gap ! = 25 mm; relative flow rates indicated by
lengths of arrows; Reynolds number and Weissenberg number based on flow rate measurement in upper
right arm.
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B A

(¢) R=10,W=0.2
Ficure 17. Flow past a cylinder: (a) Newtonian, () and (¢) liquid B1.
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(d) R=6,W=0.75

3 6)

'iIGure 7. Flow over a deep hole: (a) and (¢) Newtonian, (4) and (d) hiquid B3.




Ficure 8. Flow over a deep hole: exposure time, 10 minutes.
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(c) R=5,W=0

FIGURE 14. Combined mixing and separating flow : Newtonian liquid ; variable gap [, (a) { = 18 mm, () [ = 15 mm,
(¢) I = 10 mm; flow rate in all arms equal; Reynolds number based on flow in one of the arms.



(@) R=5W=0.75

(b) R=5W=075

(c) R=5W=0.75

FiGure 15. CGombined mixing and separating flow: as for figure 14 with hquid B3;
Reynolds number and Weissenberg number based on width of one of the arms.




R=1,W=0.23

(b) R=0.75, W=0.17

(¢) R=1,W=0.23

FiGure 16. Combined mixing and separating flow: liquid B2; gap / = 25 mm; relative flow rates indicated by
lengths of arrows; Reynolds number and Weissenberg number based on flow rate measurement in upper
right arm.
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Ficure 17. Flow past a cylinder: (a) Newtonian, () and (¢) liquid B1.



